Hierarchical Bayesian Neural Networks for Personalized Classification
نویسندگان
چکیده
Building robust classifiers trained on data susceptible to group or subject-specific variations is a challenging yet common problem in pattern recognition. Hierarchical models allow sharing of statistical strength across groups while preserving group-specific idiosyncrasies, and are commonly used for modeling such grouped data [3]. We develop flexible hierarchical Bayesian models that parameterize group-specific conditional distributions p(yg | xg,Wg) via multi-layered Bayesian neural networks. Sharing of statistical strength between groups allows us to learn large networks even when only a handful of labeled examples are available. We leverage recently proposed doubly stochastic variational Bayes algorithms to infer a full posterior distribution over the weights while scaling to large architectures. We find the inferred posterior leads to both improved classification performance and to more effective active learning for iteratively labeling data. Finally, we demonstrate state-of-the-art performance on the MSRC-12 Kinect Gesture Dataset [2].
منابع مشابه
Estimation of Products Final Price Using Bayesian Analysis Generalized Poisson Model and Artificial Neural Networks
Estimating the final price of products is of great importance. For manufacturing companies proposing a final price is only possible after the design process over. These companies propose an approximate initial price of the required products to the customers for which some of time and money is required. Here using the existing data of already designed transformers and utilizing the bayesian anal...
متن کاملPrediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin
The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...
متن کاملAuthor gender identification from text using Bayesian Random Forest
Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...
متن کاملA Probabilistic Model for COPD Diagnosis and Phenotyping Using Bayesian Networks
Introduction: This research was meant to provide a model for COPD diagnosis and to classify the cases into phenotypes; General COPD, Chronic bronchitis, Emphysema, and the Asthmatic COPD using a Bayesian Network (BN). Methods: The model was constructed through developing the Bayesian Network structure and instantiating the parameters for each of the variables. In order to validate the achiev...
متن کاملBuilding Interpretable Models: From Bayesian Networks to Neural Networks
This dissertation explores the design of interpretable models based on Bayesian networks, sum-product networks and neural networks. As briefly discussed in Chapter 1, it is becoming increasingly important for machine learning methods to make predictions that are interpretable as well as accurate. In many practical applications, it is of interest which features and feature interactions are relev...
متن کامل